Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Algèbre éclectique

Mneimné Rached, Eiden Jean-Denis, Danila Gentiana
Date de parution 14/10/2021
EAN: 9782916352909
Disponibilité Disponible chez l'éditeur
Paris est le seul lieu du monde où il existe de ces maisons éclectiques où tous les goûts, tous les vices, toutes les opinions sont reçus avec une mise décente (Balzac, Une fille d'Ève, 1839).Le livre que vous tenez en main est une oeuvre délicate,... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurCALVAGE MOUNET
Nombre de pages730
Langue du livreFrançais
AuteurMneimné Rached, Eiden Jean-Denis, Danila Gentiana
FormatPaperback / softback
Type de produitLivre
Date de parution14/10/2021
Poids1124 g
Dimensions (épaisseur x largeur x hauteur)4,10 x 15,70 x 23,50 cm
Un bouquet de thèmes et d'exercices pour le M1
Paris est le seul lieu du monde où il existe de ces maisons éclectiques où tous les goûts, tous les vices, toutes les opinions sont reçus avec une mise décente (Balzac, Une fille d'Ève, 1839).Le livre que vous tenez en main est une oeuvre délicate, qui brasse des mathématiques accessibles aux étudiants de M1. Comme son titre l'indique, l'ouvrage réunit des sujets très divers, pensés nonobstant avec soin : il en résulte un assortiment de thèmes dont le dénominateur commun est l'harmonie des genres et la joliesse des résultats. Les auteurs l'ont construit sur une longue durée, dans un style rigoureux, sans se fourvoyer pour autant dans une minutie qui serait inappropriée au niveau où ils se placent. Ils expriment dans leur préface la pensée suivante : "Nous aurions aimé avoir un tel recueil quand nous étions encore étudiants, et en bénéficier quand nous préparions, plus tard, à l'intention de nos élèves, nos cours et nos séances de travaux dirigés."La théorie des modules et la théorie de Galois forment l'ossature de l'ouvrage. On y trouve aussi un chapitre exhaustif sur les anneaux Z/nZ, d'autres sur les anneaux généraux, les polynômes symétriques, les corps finis, la réduction des endomorphismes et la théorie algébrique des nombres.Si la théorie des groupes, qui fait partie du programme de licence, occupe une place cruciale dans les prérequis, elle est revisitée ici avec fine attention. Car, comment ferait-on autrement si l'on a en vue l'introduction, comme il se doit, des modules sur un anneau R à travers les représentations de R dans des groupes abéliens, et si l'on prétend par ailleurs avoir une réelle maîtrise de la théorie des extensions algébriques des corps, quand il s'agira en particulier de la correspondance de Galois ?Le public auquel s'adresse cet ouvrage dépasse, il va sans dire, celui des seuls étudiants de quatrième année des universités, et inclut les brillants élèves des classes préparatoires ainsi que leurs professeurs, mais également les agrégatifs et, au delà, tous les amoureux de l'algèbre en général. Gentiana Danila, Jean-Denis Eiden et Rached Mneimné réussissent avec brio et grand soin dans leur ambitieux projet, et nous offrent ainsi un texte original qui restera pour longtemps une référence de choix. Les lectrices et lecteurs qui viendront à ces mathématiques par l'attrait des fragrances promises moissonneront en travaillant ce livre des gerbes de blés dorés et de pépites mathématiques.