Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Théorie de Morse et homologie de Floer

Audin Michèle
Date de parution 02/09/2010
EAN: 9782759805181
Disponibilité Disponible chez l'éditeur
Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la "conjecture d'Arnold', qui propose de minimiser le nombre de trajectoires périodiques de certains sy... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurEDP SCIENCES
Nombre de pages548
Langue du livreFrançais
AuteurAudin Michèle
FormatPaperback / softback
Type de produitLivre
Date de parution02/09/2010
Poids800 g
Dimensions (épaisseur x largeur x hauteur)3,10 x 15,50 x 23,00 cm
Cet ouvrage est une introduction aux méthodes modernes de la topologie symplectique. Il est consacré à un problème issu de la mécanique classique, la "conjecture d'Arnold', qui propose de minimiser le nombre de trajectoires périodiques de certains systèmes hamiltoniens par un invariant qui ne dépend que de la topologie de la variété symplectique sur laquelle évolue ce système. Ce livre comporte deux parties : une présentation moderne de la théorie de Morse, suivie d'une introduction à l'homologie de Floer - une théorie de Morse en dimension infinie qui est à l'origine des progrès récents en géométrie symplectique et de contact; il vient combler une lacune dans la littérature, puisqu'il n'existe pas de référence absolument complète et accessible sur le sujet.