Traitement en cours...
Fermer la notification

Le saviez-vous ?

SIDE a travaillé avec ses fournisseurs pour rendre ses colis respectueux de l'environnement.
Fini le plastique !
Le ruban adhésif qui sécurise la fermeture de nos colis et les chips de calage qui immobilisent les livres dans les cartons sont en matériaux recyclables et biodégradables.

Afficher la notification

Méthodes de Monte-Carlo et processus stochastiques :

Gobet Emmanuel
Date de parution 26/11/2013
EAN: 9782730216166
Disponibilité Manque temporaire
La méthode de Monte-Carlo, qui tire son nom du fameux casino à Monaco, s'est développée de manière spectaculaire depuis 60 ans : elle figure parmi les 10 algorithmes ayant eu le plus d'influence sur le développement et la pratique de la science et de... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurECOLE POLYTECH
Nombre de pages236
Langue du livreFrançais
AuteurGobet Emmanuel
FormatPaperback / softback
Type de produitLivre
Date de parution26/11/2013
Poids446 g
Dimensions (épaisseur x largeur x hauteur)1,50 x 17,00 x 24,00 cm
du linéaire au non linéaire
La méthode de Monte-Carlo, qui tire son nom du fameux casino à Monaco, s'est développée de manière spectaculaire depuis 60 ans : elle figure parmi les 10 algorithmes ayant eu le plus d'influence sur le développement et la pratique de la science et de l'ingénierie au XXe siècle. En fait, il n'existe pas une méthode de Monte-Carlo mais des méthodes de Monte-Carlo. La 1re partie de l'ouvrage dresse un panorama de l'existant, puis détaille les outils de base pour la simulation de variables aléatoires, les résultats de convergence les plus courants et les techniques d'accélération des méthodes de Monte-Carlo. Puis, la 2e partie aborde la simulation des équations différentielles stochastiques (processus à évolution linéaire dérivant du mouvement brownien), dont les applications en biologie, chimie, économie, finance, géophysique, mécanique des fluides, neuroscience etc. sont importantes. L'objectif principal est le calcul d'espérance de leurs trajectoires.Cela donne, via les formules de Feynman-Kac, des solutions probabilistes aux équations aux dérivées partielles : ce lien remarquable permet de résoudre, par simulations Monte-Carlo, ces équations en toute dimension. Enfin, la 3e partie, la plus originale, traite des processus stochastiques ayant des évolutions non-linéaires (modélisant des interactions variées), comme les équations du contrôle stochastique, les diffusions branchantes, les équations stochastiques de McKean-Vlasov, avec des applications fondamentales en plein développement. Nous présentons notamment quelques idées importantes d'apprentissage statistique, dont le couplage aux méthodes de Monte-Carlo (via les régressions empiriques) conduit à des algorithmes des plus performants.Dans cet ouvrage, nous mettons en avant les grands principes de simulation efficace, avec une présentation exigeant le moins de préalables mathématiques. Le niveau prérequis à la lecture de ce cours est celui de Master 1, ou 2e année d'école d'ingénieurs. Cet ouvrage intéressera aussi des étudiants plus avancés ou des enseignants-chercheurs, souhaitant dégager l'essentiel des outils sophistiqués pour la simulation de processus stochastiques linéaires et non-linéaires.