Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Machine Learning pour l’économétrie

Gaillac Christophe, L’Hour Jérémy
Date de parution 16/10/2023
EAN: 9782717872729
Disponibilité Disponible chez l'éditeur
Machine learning pour l’économétrie est un ouvrage destiné aux économistes qui souhaitent appréhender les techniques de machine learning modernes – de leurs performances en matière de prédiction au traitement révolutionnaire des données non structuré... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurECONOMICA
Nombre de pages420
Langue du livreFrançais
AuteurGaillac Christophe, L’Hour Jérémy
FormatPaperback / softback
Type de produitLivre
Date de parution16/10/2023
Poids650 g
Dimensions (épaisseur x largeur x hauteur)0,00 x 15,50 x 24,00 cm
Machine learning pour l’économétrie est un ouvrage destiné aux économistes qui souhaitent appréhender les techniques de machine learning modernes – de leurs performances en matière de prédiction au traitement révolutionnaire des données non structurées – afin d’établir des relations de causalité à partir des données.Il aborde la sélection automatique de variables dans divers contextes de grande dimension, l’estimation de l’hétérogénéité des effets du traitement, les techniques de traitement du langage naturel (NLP), ainsi que le contrôle synthétique et les prévisions macroéconomiques.Les fondements des méthodes de machine learning sont introduits de manière à proposer à la fois un traitement théorique approfondi de la façon dont elles peuvent être utilisées en économétrie, ainsi que de nombreuses applications économiques. Chaque chapitre contient une série d’exemples empiriques, de programmes et d’exercices pour faciliter l’adoption et la mise en œuvre des techniques par le lecteur.Ce livre s’adresse aux étudiants de master ou de grandes écoles, aux chercheurs et aux praticiens désireux de comprendre et perfectionner leur connaissance du machine learning pour l’appliquer dans un contexte traditionnellement réservé à l’économétrie.