Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Dérivation, intégration

Wagschal Claude
Date de parution 14/04/2012
EAN: 9782705683504
Disponibilité Disponible chez l'éditeur
Nouvelle édition revue et augmentéeDans le premier chapitre de cet ouvrage, Claude Wagschal présente le calcul différentiel dans les espaces de Banach et introduit le langage de base de la géométrie différentielle. Dans le second chapitre, il expose ... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages534
Langue du livreFrançais
AuteurWagschal Claude
FormatPaperback / softback
Type de produitLivre
Date de parution14/04/2012
Poids845 g
Dimensions (épaisseur x largeur x hauteur)0,00 x 15,60 x 23,40 cm
Licence-master, Agrégation, Écoles d'ingénieurs
Nouvelle édition revue et augmentéeDans le premier chapitre de cet ouvrage, Claude Wagschal présente le calcul différentiel dans les espaces de Banach et introduit le langage de base de la géométrie différentielle. Dans le second chapitre, il expose la théorie de l'intégration sur un espace mesuré. L'intégrale de Lebesgue constitue un outil fondamental en Analyse car elle permet de définir des espaces (de classes) de fonctions qui sont complets. Une mention toute particulière doit être faite de l'espace de Hilbert L2 qui joue un rôle central dans les applications car il ouvre la voie de toutes les méthodes hilbertiennes. Signalons également que la théorie de la mesure est un préalable indispensable à tout enseignement du Calcul des Probabilités.Près de 200 exercices (corrigés) sont proposés au cours de l'exposé. Un soin tout particulier a été apporté à leur rédaction pour guider l'étudiant dans la recherche de leur solution. Certains ne sont que des applications directes de résultats généraux et permettent au lecteur de tester sa compréhension. D'autres présentent des exemples concrets d'applications ou constituent des développements plus élaborés n'ayant pas trouvé leur place dans le texte principal.