Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Une histoire de l'imaginaire mathématique

Dhombres Jean, Alvarez Carlos
Date de parution 19/08/2011
EAN: 9782705681920
Disponibilité Disponible chez l'éditeur
L'histoire est un choix et non une nécessité. Au contraire de la mathématique enseignée qui, par souci d'économie et d'efficacité pédagogique, se présente comme une pensée presque toujours unique. Nous choisissons le théorème fondamental de l'algèbre... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages410
Langue du livreFrançais
AuteurDhombres Jean, Alvarez Carlos
FormatPaperback / softback
Type de produitLivre
Date de parution19/08/2011
Poids655 g
Dimensions (épaisseur x largeur x hauteur)0,00 x 17,00 x 24,40 cm
Vers le théorème fondamental de l'algèbre et sa démonstration par Laplace en 1795
L'histoire est un choix et non une nécessité. Au contraire de la mathématique enseignée qui, par souci d'économie et d'efficacité pédagogique, se présente comme une pensée presque toujours unique. Nous choisissons le théorème fondamental de l'algèbre, juste avant qu'il porte un tel nom. On l'énonce aujourd'hui sous une forme minimale : un polynème non réduit à une constante et à coefficients réels possède au moins une racine de forme complexe. Pour rester dans un cadre élémentaire, ce premier volume s'arrête juste avant la première preuve de Gauss, et bien sûr avant l'intervention de Galois. La simplicité de l'énoncé du théorème fondamental de l'algèbre n'est contaminée par aucune écriture symbolique absconse. Polynèmes, constantes, coefficients, racines, nombres complexes, nullité d'une expression algébrique, ces quelques mots disent le contexte du théorème. Parlons d'une banalisation d'une forme polynomiale : ce théorème est devenu sens commun, celui de l'algébre élémentaire, voire aussi de l'algébre commutative. L'histoire est celle de la notion d'imaginaire inventée par Descartes jusqu'à sa réduction à un nombre complexe. Mais l'adjectif « complexe » qualifie la nature du nombre, et non un type de raisonnement. Car le théorème et ses preuves font comprendre ce qui est simple, et la complexité réfère seulement à la présence de deux unités de mesure, au lieu d'une seule, comme lorsque l'on écrivait autrefois une longueur en 2 pieds 3 pouces. Sous le prétexte qu'il s'agit aussi d'une histoire érudite et que plus de cent cinquante années s'écoulèrent entre une affirmation de Descartes en 1637 et la dernière démonstration envisagée qui est celle de Laplace en 1795, notre rôle ne doit surtout pas être de surcharger de difficultés, même en prenant en compte les diverses tentatives d'enseignement des mathématiques à cette période, les difficultés non résolues d'Euler et de Lagrange, et l'avancée de Jean d'Alembert. La simplicité recouvre bien des débats, sur le rôle du signe et de sa mise en oeuvre dans la pensée en général et il n'est pas banal de voir ainsi hésiter de grands mathématiciens sur ce qui est devenu simple, mais on apprend beaucoup sur ce que c'est que penser en mathématiques.