Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Problèmes classiques en théorie des équations aux dérivés partielles

Ababou-Boumaaz Rachel, Francheteau Jacques
Date de parution 29/08/2009
EAN: 9782705668969
Disponibilité Disponible chez l'éditeur
Ce cours d'analyse est consacré à l'exposition d'un certain nombre de thèmes classiques en théorie des équations aux dérivées partielles et il s'adresse à des étudiants de master, des élèves en écoles d'ingénieurs ou à tous ceux qui désirent connaîtr... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages342
Langue du livreFrançais
AuteurAbabou-Boumaaz Rachel, Francheteau Jacques
FormatPaperback / softback
Type de produitLivre
Date de parution29/08/2009
Poids462 g
Dimensions (épaisseur x largeur x hauteur)1,80 x 15,60 x 23,40 cm
Master 1 et 2, écoles d'ingénieurs
Ce cours d'analyse est consacré à l'exposition d'un certain nombre de thèmes classiques en théorie des équations aux dérivées partielles et il s'adresse à des étudiants de master, des élèves en écoles d'ingénieurs ou à tous ceux qui désirent connaître cette partie importante des mathématiques. Ce travail part du théorème d'Existence et d'Unicité pour les solutions d'équations différentielles non-linéaires, aborde la résolution des équations scalaires linéaires du 1er ordre (la méthode employée est celle des courbes caractéristiques) et s'intéresse ensuite aux équations scalaires quasi-linéaires. La transformation de Fourier, présentée au chapitre 6, est très importante car elle permet de résoudre les équations à coefficients constants de la formeP(u) = F où P est un opérateur différentiel en (t, x). Les équations des ondes, de la chaleur et de Schrödinger sont toutes de ce type et font l'objet d'une résolution très détaillée au moyen de formules explicites. À la fin, on quitte le domaine des équations à coefficients constants pour celui des équations à coefficients variables. Les méthodes employées pour résoudre ces équations donnent lieu à des développements très importants et font largement partie du domaine de la recherche.