Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Géométries affine et euclidienne, quadriques

Vienne Lucas
Date de parution 05/09/2005
EAN: 9782705665203
Disponibilité Disponible chez l'éditeur
Cet ouvrage présente les bases de géométrie que doit connaître tout étudiant désireux d'aborder des théories plus profondes (géométrie projective, puis géométrie algébrique), ou simplement de se préparer aux concours d'enseignement. Pour éviter de se... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages260
Langue du livreFrançais
AuteurVienne Lucas
FormatPaperback / softback
Type de produitLivre
Date de parution05/09/2005
Poids469 g
Dimensions (épaisseur x largeur x hauteur)1,40 x 17,00 x 24,40 cm
Cet ouvrage présente les bases de géométrie que doit connaître tout étudiant désireux d'aborder des théories plus profondes (géométrie projective, puis géométrie algébrique), ou simplement de se préparer aux concours d'enseignement. Pour éviter de se disperser dans les innombrables résultats de géométrie classique, on a retenu quelques lignes directrices : - définition de la géométrie affine, en donnant un cadre mathématique à la géométrie du monde physique ; - distinction claire de la nature vectorielle, affine ou euclidienne des différents concepts introduits ; - étude des transformations vectorielles, affines ou euclidiennes de l'espace Rn ; - développement de la géométrie des coniques et des quadriques dans Rn ; classement de ces objets sous l'action du groupe affine ou du groupe orthogonal ; - introduction à la géométrie projective, montrant notamment comment elle permet d'unifier les trois types de coniques affines (ellipse, parabole et hyperbole).