Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

Fonctions holomorphes, équations différentielles

Wagschal Claude
Date de parution 17/04/2003
EAN: 9782705664565
Disponibilité Disponible chez l'éditeur
Le premier chapitre de cet ouvrage est consacré à la théorie des fonctions holomorphes, essentiellement d'une variable complexe. On y trouvera un exposé des notions de topologie algébrique (homotopie, revêtement, etc.) indispensables pour comprendre ... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurHERMANN
Nombre de pages468
Langue du livreFrançais
AuteurWagschal Claude
FormatPaperback / softback
Type de produitLivre
Date de parution17/04/2003
Poids622 g
Dimensions (épaisseur x largeur x hauteur)2,50 x 15,20 x 22,90 cm
Exercices corrigés
Le premier chapitre de cet ouvrage est consacré à la théorie des fonctions holomorphes, essentiellement d'une variable complexe. On y trouvera un exposé des notions de topologie algébrique (homotopie, revêtement, etc.) indispensables pour comprendre certains aspects de cette théorie, en particulier tout ce qui se rattache au prolongement analytique. Il comporte également de très nombreux exercices de difficulté variable dont les solutions sont données en fin de chapitre. Le second chapitre est une introduction à la théorie des équations différentielles, aussi bien dans le champ réel que dans le domaine complexe. On aborde en particulier l'étude des équations différentielles à points singuliers réguliers : théorème de Fuchs, théorèmes d'Indice (Komatsu-Malgrange). On y traite également des équations aux dérivés partielles du premier ordre dont la résolution se réduit à celle de leur système caractéristique (méthodes de Cauchy) et, enfin, on résout le problème de Cauchy pour des équations aux dérivées partielles holomorphes d'ordre supérieur (théorème de Cauchy-Kowalevsky). Cet ouvrage s'adresse particulièrement aux étudiants en mathématiques des universités (deuxième et troisième cycle) et à ceux qui préparent le concours de l'agrégation.