Traitement en cours...
Fermer la notification

Toutes nos lignes téléphoniques...

sont actuellement en dérangement du fait de l'opérateur (SFR), qui nous dit mettre tout en œuvre pour rétablir la situation dans les plus brefs délais mais jusqu'ici n'a pas réussi à le faire.
Nous restons cependant à votre disposition par d'autres moyens pour vous informer.
Si vous souhaitez connaître les dates estimées d’expédition des titres que vous avez commandés, pensez à simplement consulter le détail de vos commandes sur side.fr.
Si vous avez besoin d’une autre information, vous pouvez, selon votre urgence, écrire à notre service clients à france@side.fr ou appeler directement votre représentant ou appeler le 06 34 54 96 63, le numéro d'urgence temporaire que nous avons mis en place en attendant de retrouver notre accueil téléphonique habituel.

Afficher la notification

La Data Science pour modéliser les systèmes complexes

Chautard Alain
Date de parution 07/09/2022
EAN: 9782100830879
Disponibilité Disponible chez l'éditeur
La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige ... Voir la description complète
Nom d'attributValeur d'attribut
Common books attribute
ÉditeurDUNOD
Nombre de pages224
Langue du livreFrançais
AuteurChautard Alain
FormatPaperback / softback
Type de produitLivre
Date de parution07/09/2022
Poids478 g
Dimensions (épaisseur x largeur x hauteur)1,60 x 17,00 x 24,00 cm
Optimiser la prédiction, l'estimation et l'interprétation
La data science est devenue un outil de prévision et d’aide à la décision indispensable aux ingénieurs, aux chercheurs et aux responsables en charge de la gestion des projets et des processus.Toutefois, son application à des systèmes complexes exige de dépasser les méthodes linéaires de modélisation généralement appliquées. En effet, si ces méthodes fonctionnent dans la plupart des environnements, elles présentent d’importants biais dès lors que l’on a affaire à des systèmes complexes (météorologie, physique non linéaire, économétrie, finance, etc.).En s’appuyant sur trois cas concrets représentatifs (environnement physique, marchés financiers, gestion de projet), cet ouvrage illustre comment exploiter les données de systèmes complexes pour construire des modèles maîtrisables, exploitables et performants en termes de prédiction, d’estimation et d’interprétation. Il offre une réflexion globale sur les spécificités des systèmes complexes ainsi que des outils concrets pour mieux les interpréter.