Treatment in progress...
Close notification

Our telephone...

is currently not working. We're doing all we can to get the problem solved as soon as possible. 
In the meantime, please use e-mail to contact us.

Display notification

Estimation de la fonction de dépendance de Pickands

KCHAOU Imen
Publication date 25/01/2022
EAN: 9786139529865
Availability Available from publisher
Dans ce livre, on a insisté sur le fait d'enlever l'hypothèse d'indépendance des observations. Dans une première partie, on a supposé que les observations sont identiquements distribuées mais dépendantes. Elles forment par exemple un processus statio... See full description
Attribute nameAttribute value
Common books attribute
PublisherUNIV EUROPEENNE
Page Count148
Languagefr
AuthorKCHAOU Imen
FormatPaperback / softback
Product typeBook
Publication date25/01/2022
Weight228 g
Dimensions (thickness x width x height)-
pour des extrêmes bivariées sous des conditions de mélange
Dans ce livre, on a insisté sur le fait d'enlever l'hypothèse d'indépendance des observations. Dans une première partie, on a supposé que les observations sont identiquements distribuées mais dépendantes. Elles forment par exemple un processus stationnaire absolument régulier, mais les deux vecteurs sont indépendants entre eux.On a réussi à démontrer la consistance et la normalité asymptotique de l'estimateur de CFG pour un processus stationnaire absolument régulier, mais dans le cas fortement mélangeant, ceci reste impossible suite a une constante qui n'est pas explicite.Dans une deuxième partie, on a simulé un modèle d'extrême bivariée qui puisse vérifier la dépendance inter et intra séries. La fonction de dépendance de Pickands a été calculée dans le cas k-dépendant, pour k supérieur ou égal à 1. On a proposé un test, puis on a étudié sa performance dans le cas des v.a. bivariés 1-dépendantes.On peut conclure selon les simulations que le niveau empirique de notre test parait bien tant que la taille de l'échantillon est grande, et sa puissance est bien tant que le degré de dépendance r tend vers 0.